Provably:Secure FEIF Hashing

((+ comments oni probably: secure™ hash fUNCtions)

Vadimi Lyubashevsky. Daniele Micciancio

(University: of Califiornia, Samn Diego)

Chris Peikert Alonr Rosen
(MIT) (Harvard University)

Our Hash Function
A (Very) High' LLevell Description

Key: 3frandom' polynomials
Input: 3 pelynemials with smallf coefificients
Function: compute sum of preducts

All arithmetic perfermedmodule’ pramnd: 57+1
(s the indeterminate in the: pelynomials)

EUNCtIon IS Very: efficient, parallelizable, ana
provably: collision-resistant.

Efficiency: and Security.

Efficiency:
- Input has b bits
. O(b'log()) time to compute the hash

Security (2 modes of the function):
- “Bulk mede”
llarge eutput

Finding collisions at least as hard as/ solving al certain lattice' problem
in the worst case.

. "Nano mode”™
Small eutput
Same structure asi the bulk mode

Finding| collisions equivalent to selving a certain (different) lattice
problem in the average case

Diffusion and Confusion

Diffusion and Confusion

Eor Difftision, We Use the Fast Fourier
liranstorm
s [dea already appeared in [[S91,S92,SVI5]

[For Conftision) simply: use linear
combinations

By using| resultsiin [IM02,PRO6,LMO6], we
cam bulld ar provably: SEcUre Compression
Function.

Performing the Compression
(Step 0, Entering Input)

Compressing ai string off length mn (m=3)

Each X is ini{0;...,d}

S0 domain is off size (d+1)mn (C(d+1)27)
All'operations: performed in the field Z, (p>>d)

Performing the Compression
(Step 1, Diffusion)

Step) 1: multiply x; ; Dy wit

s (Just 3 trick te do multiplication medulo 57+1)
s W Is an element in Z°, of order 2n

s Thus, w=isia primitive n™ root of unity in'Z",

Performing the Compression
(Step 2, Diffiusion)

__

WE Y E Y E

Step 2: Compute the Fast Fourier Trransterm of
each grouping

s Use w= as the; primitive n root of unity in Z",

) Yi,j=Z1sk5n(xi,jo'1)W2j(k'1)

Performing the Compression
(Step 3, Confiusion)

] o] B

» , . - (0
IF B o B o
Step) Sk MUltiply v - by a ;

u Thea;; are uniformly random InZ,
= [hey are the hash function key

Performing the Compression
(Step 4, Confusion)

E!..-J

Y S

Step 4: ;=21 <i<p @i Yi
» Output size: p~-

Equivalent: Hash Function

Input: X;,....X, in Z[B]/<B"+1> (M=3)
s Each coefificient of x; I1siin{0;...,d}

Hash key: a,,...,a., In Z,[Bl/<["+1>
Output: z = apx +...+a. X,

This fitnction'is completely’ eguivalent
Security-wise to the one presented and It's
much easier'tor Understand.

Security: Glarantee

Input: Xq,...,. X, N Z[Bl/<fP+1> (m=3)
| Eachi coefificient off x; is in {0;...,d}

Hash key: ay,...,a, in Z,[B]/<pM+1>
Output: z = a; x +...+a X,

Theorem: [M02,PR0O6,LMO6]:

s FOr appropriate values of p,n,d,m, finding a collision
oK randemsay,...,a- Implies solving| the approXimate
Shortest Vector Problem for all lattices in a certain

class.

The Function in Practice
CBulk Mode?)

Can build a compression flunction WHOSe Security
IS Dasedl on al Worst-case; problem

It's efficient, but ... the output: is big.

Sample parameters a

nd security:

s Domain: = 65,000 bits

= Range: =~ 28,000 bits

a Securty: Finding coellisions implies approximating

Shortest Vector to wit

Nin factor = 2°2 in any’ 1024

dimensionall Iattice in a certain class of lattices,

Could be used torhas
for other purposes

1 large files, but impractical

Wiy such a large range?

Recall the hash function:

Inputs x,,..., % INLZ [Bl/<["+1>

= Each coefiicient of x; 1sini {0;...,d}

s Domain Is of size (d+1)m (mnilg(d+1) bits)

Hash key: a,,...,a,, In Z,[B]/<["+1>
Output: z = a X +...+a X

s Range Is of size p2 (n lg(p) bits)

In the, prooi: off security, p has to be large

Making the Range Smaller

Making| the range smaller:

x Make pismaller

s Still the same structure as; provably: secure function

s [Lose prooft of security, but finding coellisions: still
seems to be hard

By Iowering| p, Cani get:

s Domain=1024 bits, Range=5123! bits

» Finding collisiens is equivalent tera certain average-
case (no lenger worst-case) lattice problem

Equivalent Lattice Problem

et a=(ay,...,a.) be a randem Vector (O=a <p):
Define Ret(a) as:

Equivalent: Lattice Problem

R t(g

Rot(g)

[Lattice; generated
Py the rows of
matrix B

Problem: find
VEector In lattice
with smallfint norm

Equivalent Lattice Problem

IHardness off SVP for previeus lattice depends on What Rot(d.) s

= Iff Rot(g;) is as we defined it, then finding collisions, in the hash
function is eguivalent to ﬂndlng | Vectorin| the; lattice withr inf.

norm < d

Note: I Rot(% IS a randon matrix, them we get a version of a well-
studied (andfbelieved to) be hard) problem

s Great for security: ... but we don't know! how! to, make: efficient
hash fiunctien equwalent to the hardness of that problem

To get equwalency to an efificient hash function, Rot(g.) needs to
have some; algebraic structure™.

Algebraic Structure of B

Tihe lattice generated! by B has al ot of
“algebraic structure.

Jihe structure does not seem to be: useful fior
standard lattice;algorithmsi (e.g. LLL)

BUt other attacks exploiting the structure ma}/]
be possible (for example, defining Rot(a) sI|g tly
diffierently: makes the SVP: problem: Very: easy).

But the fact that we have al prooef: that Woerks: for
larger values of p giVES somel evidence that the

algebralc structure’is not expleitable for smaller
p'S as well

Sample Parameters fior Hash
FURCEoN

Inputi xy,..., X, N Z [BI/<pP+1>

| Eachi coefificient ofi x; is in {0;...,d}
Hashikey: ay,...,a, In Z,[B]/<[+1>
Output: z = a; Xy +...+a X%,

n=64, m=8, d=3, p=257
Domain=1024 bits, Range=>513 bits

Tlakes = 15 times;longer than SHA-256 (We're in
the Initial stages; off implementation)

Conclusion

Presented an approachi for using EEIF to
Construct efficient, prevably: collision-resistant
nash functions. .

Using this approach:

s Constructed an' efficient: hashi function, WRICH may: be
userul fior hashingrlarge; files, Whnose security. IS based
0N al WOorSt=Case; problen.

s Constructed an efficient hash| function WNose Security:
IS based on anl average-case lattice problem.

Comments on Probably: Secure
[Hashi Functions

[LASH-k (firom this Workshop)
= kK = output lengthi (e.g. k=160,256,384,512)

WWe can break compression function: fior
e.g. k=232, 368, 1056, 2096, 10248,...

“Lunch-time™ attack ... literally

	Provably Secure FFT Hashing�(+ comments on “probably secure” hash functions)
	Our Hash Function�A (Very) High Level Description
	Efficiency and Security
	Diffusion and Confusion
	Diffusion and Confusion
	Performing the Compression�(Step 0, Entering Input)
	Performing the Compression�(Step 1, Diffusion)
	Performing the Compression�(Step 2, Diffusion)
	Performing the Compression�(Step 3, Confusion)
	Performing the Compression�(Step 4, Confusion)
	Equivalent Hash Function
	Security Guarantee
	The Function in Practice�(“Bulk Mode”)
	Why such a large range?
	Making the Range Smaller
	Equivalent Lattice Problem
	Equivalent Lattice Problem
	Equivalent Lattice Problem
	Algebraic Structure of B
	Sample Parameters for Hash Function
	Conclusion
	Comments on Probably Secure Hash Functions

